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:i: Dnepropetrovsk State University, USSR 
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Abstract. The close correspondence between the superfield approach to the supersym- 
metry and the Volkov-Akulov nonlinear realisation is established. We show that any 
superfield, by certain field-dependent changes of variables xLl. e,, can be transformed to the 
form in which it is represented by nonlinearly transforming components. Conversely, there 
always exist functions of the nonlinear realisation objects which transform according to the 
linear supertransformation law. We derive general theorems and explicit formulae which 
describe the transition from the linear realisation to the nonlinear one and vice-versa. 

1. Introduction 

The supersymmetry can be implemented within two different approaches. One of them 
is the linear realisation (Golfand and Lichtman 1971, Wess and Zumino 1974) defined, 
in its most elegant form, on superfields 4k(x, e )  (Salam and Strathdee 1974, 1975)t 

) (1) 
a;(x, e)=Qk(x+--Eye, 1 e - €  

2i 

E being a constant spinor parameter and k the Lorentz index. The other is the 
Volkov-Akulov (1972, 1973) nonlinear realisation which involves as a basic entity the 
nonlinearly and inhomogeneously transforming Goldstone spinor A (x) 

and acts on other, unpreferred fields Q(X) as follows 

(see, also, Pashnev 1974). The nonlinear realisation exhibits most purely the concept of 
spontaneous supersymmetry breaking. 

In the case of usual, Bose symmetries, analogous approaches are known to be 
related with each other (Coleman, Wess and Zumino (cwz) 1969) and one may expect 
something of this kind also in the case of supersymmetry. For instance, in 1974 

i We are using the Majorana formalism. Our conventions on metrics and y-matrices coincide with those of 
Salam and Strathdee (1975). 
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Ogievetsky constructed certain linearly transforming functions of the Goldstone spinor 
A ( x )  in the space-time of dimensionality 2 + 1. The analogous result for a scalar 
supermultiplet in the Minkowski space-time has been reported by Zumino (1974). 
However the general structure of the relationship between two realisations of super- 
symmetry remained unclear. 

In the present paper we establish the explicit form of this relation through an 
appropriate extension of methods applied by cwz (1969) in their analysis of the relation 
between linear and nonlinear realisations of Bose symmetries. The paper is organised 
as follows. In 5 2 we show that an arbitrary superfield can always be represented in a 
‘splitting’ form in which its components transform according to the nonlinear law (3). 
We formulate general prescriptions for passing to the splitting representation. In 0 3 ,  
we give a complete solution to the related problem of constructing linearly transforming 
superfields from the nonlinear realisation quantities A ( x ) ,  a k ( X ) .  The developed 
methods are applicable, with obvious modifications, to any supersymmetry realised in 
some superspace. We compare our results with general theorems derived by cwz 
(1969) in standard symmetries and find close correspondence between them. 

2. The splitting representation of superfields 

2.1. The general theory of nonlinear realisations of internal symmetries tells us that 
any linear multiplet of a given group can be converted into the direct sum of 
nonlinearity transforming fields by means of the group transformation with the Gold- 
stone field as a parameter (CWZ 1969). The analogous theorem turns out to hold also in 
the case of supersymmetry. 

Perform, in some superfield @ k ( x ,  e),  the local supertranslation with parameter 
-A ( x ) :  

and examine how the shifted superfield @ z ( x ,  e )  behaves under global supertrans- 
formations (l), (2) .  As @ z ( x ,  e )  is a composite superfunction its infinitesimal variation 
consists of two pieces. First of them is the usual supertranslation according to rule (1) 
but at points x l  = x,  -(1/2i)i(x)y,e, e ’=  e + A ( x ) ,  

and the second is induced by the change of field A ( x )  in arguments x: ,  e’, 

where 6A ( x )  is given by equation (2). Summing separate variations ( 5 ) ,  (6 )  and taking 
into account the relation 

we find that components of d z ( x ,  6 )  transform independently of each other, according 
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to the nonlinear law (3), 

Thus, by changing variables any superfield with the linear transformation rule (1) can 
always be brought into the splitting form (4) in which it  is represented by a set of 
nonlinearly transforming components. 

As follows from equation (4) components of @ z ( x ,  e )  are finite polynomials in 
anticommuting spinors A ( x )  and are linear in components of initial superfield @k(x ,  e).  
They all can be represented as a result of repeated application of the operator 

a i  a 9 (A ) = : + -(y,A )- 
ah 2i ax ,  

(which is nothing but the Salam-Strathdee (1975) spinor covariant derivative taken at 
8 = A ) to the A -polynomial @k ( x ,  A ( x ) ) :  

A ~ ( x ) = @ k ( X , A ( x ) ) = A k ( X ) + .  . . 

the derivative d / a x ,  acting only on the first argument of @ k ( x , A )  i.e. on linearly 
transforming components. It should be emphasised that the supersymmetric mapping 
(8) in contrast to the case of usual symmetries, with necessity includes field derivatives. 

To avoid a possible misunderstanding, we point out that the existence of the splitting 
representation (4) for a superfield does not mean, in itself, that the superfield approach 
is equivalent to the nonlinear realisation, as far as A ( x )  remains an extra field unrelated 
to linearly transforming components. One-to-one correspondence between both 
approaches can be established only within the framework of spontaneously broken 
supersymmetry when superfields themselves involve the inhomogeneously transform- 
ing Goldstone component. In this case, it becomes possible to express A ( x )  through 
linear components by an equivalence transformation (see our subsequent paper). 

2.2. Now let us study in more detail the structure of transformation (4) for some special 
superfields often encountered in practice. 

Consider first the vector and spinor covariant derivatives 

They are transformed as 

a i  
ae" 2i Aa = -+-(y,O)m A" 
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where the symbol V p  stands for the nonlinear realisation covariant derivative (Volkov 
and Akulov 1972, 1973, Pashnev 1974): 

a 1 -  v p  = (T-l);-, TP, = 8; -7 a”A(x)y,A ( x )  ax ,  21 

and the @-dependent matrix MP, is defined by 

Note that V P A  ( x ) ,  V P a k ( x )  transform under (2) and (3) as fields a k ( x )  themselves. Being 
formed only of covariant quantities, A ” 4 Z ( x ,  e), Aaq5Z(x, e )  are manifestly covariant 
with respect to transformations (2) and (7). 

One more important class of superfields is given by chiral ones 4; ( x ,  6 )  defined as 
(Salam and Strathdee 1975) 

& ( x ,  e)=exp(*$Ba’ys8)s:(x, e,) (13) 

e, = )(I * iys)e. 

where S:  ( x ,  6,) depends only on two-component Grassmann spinors 

When 4; ( x ,  e)  undergo supertransformation (l) ,  the truncated superfields S:  ( x ,  e,) 
transform as 

si* ( x ,  e,) = S:  ( X  - izye T & Y ~ E ,  e, - e,) (14) 

thus realising by themselves representations of the same superalgebra. The splitting 
form of S ;  ( x ,  e,) may be arrived at again by means of the substitution E + -A ( x )  in law 
(14): 

s : ( x ,  e , ) - + s ; * ( x ,  e,)= S : ( X  + i X ( x ) y e , ~ $ X ( x ) y y ~ ~ ( x ) ,  ~ , + A , ( x ) ) .  (15) 

As in deriving equation (7), one can readily check that components of S T * ( x ,  0,) 
transform according to law (3). Note that, whereas q5: ( x ,  6 )  and S :  ( x ,  e,) are connec- 
ted by simple equations (13), the relation between splitting superfields 4;* ( x ,  e )  and 
SF* ( x ,  6,) is essentially more complicated 

~ z ” ( x ,  e ) =  [I T$Bywyse% - & ( B e ) ’ ~ a ~ , , ] s ; * ( ~ ,  e,) (16) 

where 

3. Superfields as functions of the nonlinear realisation fields 

3.1. Once general formulae for transition from the linear realisation to the nonlinear 
one are established, we are in a position to answer the question of the possibility of 
constructing linearly transforming superfields out of objects A ( x ) ,  crk ( x ) .  

Relation (4) may be inverted to give 

4 k ( &  e ) = q 5 ; [ R x ,  e),  e-A(-%, e))]  (19) 
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where 2,(x, 8) obeys the functional equation 

LI 

Iterating equation (20), one may represent Z,(x, e)  as a finite polynomial in nilpotent 
quantities 8, A (x) and derivatives of A (x), 

So relation (19) provides the decomposition of 4k(~, e )  in terms of the nonlinear 
realisation quantities. It can be regarded as a supersymmetric counterpart of the polar 
decomposition of multiplets in internal symmetries, the Goldstone spinor A (x) being an 
analogue of angular variables and components of q5z(x, 8) playing the role of radial 
variables. 

The right-hand side of equation (19) is the superposition of the following 8- 
polynomials 

A,(x, ~ ) = A , [ * ( X ,  e ) ] - e ,  (21) 

&(x, e ) = d R ( x ,  e)] (22) 

which admit a simple interpretation: they may be viewed as generated from fields A, (x), 
~ ( x )  by finite supertransformations with parameter -0,. It is proved in appendix A 
that polynomials (21) and (22) transform under (2) and (3) according to the infinitesimal 
form of linear law (1) and hence possess in themselves the properties of superfields (the 
proof is analogous to the derivation of equation (7)). 

So, given nonlinearly transforming fields A , ( x ) ,  a k ( x ) ,  by substitution x, + 2,(x, e )  
in them one can construct linearly transforming superfields with an arbitrary external 
spin. 

The components of basis superfields (21) and (22) are evaluated in terms of A,(x), 
~ ( x )  and their derivatives by the simple iteration formula: 

which is derived by using equation (20). For instance, the first two components of 
superfield (21) are given by 

A, (x = A, (XI 
1 

i m p  (x) = CL?, -%(?,A (x 110 (x 1 

C,, being the charge conjugation matrix. One directly checks that &(x) transforms 
really as the first component of superfield, 

sA, (x) = -z$, (x). 

By the way, equation (23) implies that the covariant spinor derivative G7da reduces on 
superfields (21) and (22) to usual derivative a/ax,, 
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The reason is that variables x,, 8, enter into quantities (21) and (22) not independently 
but through the fixed combination %,(x, 8). 

3.2. Having the basis set of superfields (21) and (22) we may construct new superfields 
either by multiplying the basis ones and acting on thus obtained products by usual and 
spinor derivatives or applying the algorithm x, + *,(x, e )  directly to the nonlinear 
realisation covariant derivatives VJ ( x ) ,  V , u k ( x ) .  In such a way a superfield with any 
given external spin can be attained. Irreducible superfields with definite superspins are 
extracted, as usual, with the help of projection operators (Salam and Strathdee 1975, 
Sokatchev 1975). In particular by such a procedure one may construct chiral 
superfields (13) which are known to carry superspins equal to values j of corresponding 
external spins ( j  or - j  depending on chirality). However, there exists a more direct and 
elegant recipe to build chiral superfields out of the nonlinear realization fields. Namely, 
one should start from the following set of ‘truncated’ 8-polynomials: 

X,(X, e,)= A , ( R * ) - ~ ,  (24) 

a’: ( x ,  e,) = ~ ( 2 ’ )  (25) 

where 8-functions 2; ( x ,  8,) satisfy the equations 

and 

XC(2*).. c-’A (2’). 
This set emerges as a result of inverting equation (15). In the same fashion as it is done 
in appendix A for superfields (21) and (22) we may be convinced that objects (24) and 
(25) transform just as required by the linear law (14) and therefore form a proper basis 
for constructing chiral superfields. The explicit form of simplest scalar multiplets made 
of A (x) and its derivatives by multiplying basis polynomials (24) is given in appendix B. 

Note that Zumino (1974) found the nonlinear realisation different from (2) and (3), 
with the Goldstone spinor x ( x )  transforming as follows?: 

and mentioned that he had succeeded in constructing scalar multiplets just of spinors 
~ ( x ) .  Our remark is that realisation (27) is related to the canonical one (2) through the 
equivalence redefinition of field x ( x )  just as, for instance, different nonlinear realisa- 
tions for pions are related (see e.g. Weinberg 1968). Therefore any linearly transform- 
ing function of x ( x )  can be constructed of A ( x )  and its derivatives using one of the 
general methods described above. The connection between spinors A ( x )  and ~ ( x )  is 
given by 

x ( x ) = : ( l  +iys)A(Z-(x, A ) ) + i ( l  -iys)A(Z+(x, A ) )  (28) 
where Z: are determined from the functional equations: 

z: (x, A)*!~‘ (Z*)~ ,~~A(Z*)=  x,. 

t An interesting property of realisation (27) is its reducibility, in the sense that left- and right-handed parts of 
x ( x )  transform independently of each other 

8x* = E ,  - iZy,xyt dux,. 
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(In contrast to formulae of equivalence redefinition for pions relation (28) includes 
derivatives of field A ( x ) . )  By methods analogous to those used in appendix A one may 
verify that under transformation (2) x ( x )  defined as in (28) transforms as required by 
the law (27). The Majorana nature of ~ ( x )  is readily established with taking into 
account the complex conjugation rule 

(2: )+ = z: 

which follows from the definition of 2: ( x ,  A ( x ) ) .  

3.3. In the case of usual symmetries the procedure of composing linear representations 
in terms of the nonlinear realisation is governed by a number of general theorems 
derived by cwz (1969). It turns out that all these theorems admit the supersymmetric 
extension. 

One of them determines which representations of a given group can be constructed 
starting with a set of a-fields belonging to a certain irreducible representation R of the 
stability subgroup. Namely, it states that it is possible to build only those represen- 
tations which contain R when restricted to the stability subgroup. If R enters into some 
representation m times there exist m independent ways to construct the latter. To 
verify that analogous statements are valid also in the case of supersymmetry one has to 
examine more carefully general relation (19). Digressing from the manner in which 
equation (19) has been obtained one observes that any Lorentz multiplet of a-fields in 
the right-hand side of equation (19) can be put zero without spoiling the supertrans- 
formation properties of 4 k ( x ,  8 )  in the left-hand side (such conditions, being manifestly 
covariant, produce covariant relations between components of & ( x ,  0 )  analogous to 
the relation a2 + r 2  = 1 in chiral dynamicst). Thus superfield &(X,  0 )  can be restored 
(nonlinearly) by making use of at least one set of a-fields which transforms under the 
Lorentz group like one of those irreducible Lorentz multiplets to which the components 
of &(X,  6 )  belong. Clearly i f  this multiplet is encountered among components of 
&(X,  6 )  several times, so many non-equivalent superfields &(X,  e) built with the help 
of the same set of a-fields exist. For example, given the Lorentz scalar a ( x ) ,  one may 
form three general scalar superfields 

corresponding to a number of scalar components in such a superfield. Starting with the 
pseudoscalar field a 4 x )  it is possible to construct only one scalar superfield 

again in agreement with the aforementioned theorem of cwz because the stability 
subgroup of the nonlinear realisation in question includes, along with the proper 
Lorentz transformations, also the space-time reflections$. It is perhaps worth noting 

t The detailed discussion of similar conditions for the case of an arbitrary internal symmetry is given by Ivanov 
(1976). 

Remember that the Poincare translations belong to the quotient space, usual coordinate x,  being regarded 
as the Goldstonion associated with the generator P,  (Volkov and Akulov 1972, 1973). 
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once more that the role of a-fields can be played by various products of covariant 
derivatives VJ (x), V , a k ( x ) .  

We readily recover also the remaining theorems of CWZ. As an example, take the 
important theorem which says that of the Goldstone fields themselves (without using 
their derivatives) it is possible to make up only those representations of a given group 
which contain invariants of the stability subgroup (in fact it is a corollary of the theorem 
already discussed). In the supersymmetry case, starting with A (x) alone, we are able to 
form only scalar, pseudoscalar, spinor and pseudovector superfields (multiplying basis 
spinor superfields (21) and taking into account their Grassmann and Majorana nature.) 
But only these superfields include the Lorentz scalar components. Thus the validity of 
the theorem we are discussing is clear. The specific feature of the supersymmetry case is 
that superfields thus constructed although beginning with terms without derivatives, 
inevitably include derivatives of A (x) in subsequent terms. Of course, performing the 
replacement x, + * w ( x ,  e )  in the covariant derivatives VJ (x) one may obtain 
superfields of higher external spins but all those will begin with derivatives of A (x). 

3.4. It should be noticed that results of 6 9  2 and 3 can straightforwardly be extended to 
supersymmetries more complicated than the standard one we dealt with here. Indeed, 
in order to define a mapping of the type given by equations (4) and (19) we need only to 
know how a supersymmetry is realised in a relevant superspace. Once this realisation is 
found, the splitting form of an arbitrary superfield is arrived at by the substitution of the 
corresponding nonlinear realisation Goldstone fermion (taken with sign minus) for a 
spinor parameter into the supertransformed superfield. Inverting obtained relations 
one deduces algorithms for constructing linear representations of a given supergroup in 
terms of objects of relevant nonlinear realisation. It would be interesting to relate, in 
such a manner, linear (Keck 1975) and nonlinear (Zumino 1977) realisations of the 
graded group OSp( l ,4)  which seems to play the important role in supergravity 
(MacDowell and Mansouri 1977, Deser and Zumino 1977). 

4. Conclusion 

In this paper we focused on formal, purely group theory aspects of the relationship 
between the superfield approach and the Volkov-Akulov nonlinear realisation. Its 
manifestations at the level of Lagrangians with spontaneously broken supersymmetry 
and related questions will be discussed in a subsequent paper. 

We note finally that algorithms and formulae presented here may appear to be 
useful for constructing the superspace formulation of the spontaneously broken super- 
gravity and, in particular, for transforming into the superfield language the supersym- 
metric Higgs effect which was treated up to now within the nonlinear realisation 
formalism (Volkov and Soroka 1973, Deser and Zumino 1977). 
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Appendix A 

We prove here that the objects &(x, 8) and x,(x, 8) defined by equations (21) and (22) 
undergo linear supertransformation when their constituents A, (x), CQ (x) transform 
according to the nonlinear laws ( 2 )  and (3). The proof is the same for &(x, 0) and 
I,(x, 0) therefore it is sufficient to perform it, say for x,(x, e). 

The rule of varying x,(x, 6) is as follows. One has to vary function A,(-%(x, e)) at 
fixed argument x, by law (2) and, besides, to take into account the effect of changing 
2,(x, e) due to the nonlinear shift of field A (x), variables x,, 8, remaining unaffected. 
So the supervariation of x,(x, e) is 

where 82,  satisfies the equation 

which results from varying equation (20). Observing that 

and inserting (A.2), (A.3) into (A.l) one finds 

Using relation (23) it is easy to cast (A.4) into the form 

which is just the standard superfield transformation. 

Appendix B 

The simplest chiral 'truncated' superfields which one may compose of 8-polynomials 
(24) are scalar ones: 

s*(x, e,) = X:(x, ei)A,(x, e,) = i:(2*)~*(2*)-- 2 & ~ , ( 2 ' ) +  $*e,. (B.1) 

As an example, we write down explicitly the components of S+(x, 0,) in terms of A (x) 
and its derivatives. The most compact notation is achieved by using the spinor function 

w (x) = A (Z'(x, A )) 

where 2: (x, A )  is defined by one of equations (29). In terms of w ( x )  we have 

A (2') = w(R+) 

R: + iw'(R+>y,e+ = x,. 
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Expanding both sides of (B. 1) in powers of e+ and making use of equations (B.2) we find 
for components of S+(x, e+) 
A+(x)=  w‘(x$(I +iys)w(x) 

$+(x)= - ( l+ iys)w(x)+$(~  + iys ) (y ,w)~” [~‘ t ( l  +iys)w] 

~+(x )=2- i c ; , ‘y , t ( l+ iy~)a”o  
+’ 2w - - c  ypy,+(l - iy5) aPw,aF[~‘ t ( l  +iys)w] 

+1 4w -‘l 2(1- iys)wO[w‘t(l+ iys)w]. 

Exploiting the supertransformation properties of w(x), 

1 
2i 

6 w ( x ) = E + - - E y , ( 1 - i y s ) w ( x ) d F w ( x ) ,  

we checked ‘by hand’ that functions (B.3) really form the left-handed scalar super- 
multiplet. Note that components of s - ( ~ ,  &) are simply the complex conjugates of 
(B.3). 

Note added in proof. The explicit formulae expressing components of a scalar super- 
multiplet as functions of the nonlinear realisation Goldstone fermion have also been 
obtained recently by M. RoEek (1978) through direct and tedious calculations. They 
coincide, up to the equivalence redefinition of A (x), with ours (B.3), derived using the 
general procedure (for the choice a = i in RoEek’s article, both sets of formulae are in 
fact identical with each other). We note that the basic ingredients of the approach 
developed in our present paper have already been briefly outlined in our preprint 
(1977). 
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